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Abstract

Comparative evaluations are needed to assess the suitability of near-road air pollution models for 

traffic-related ultrafine particle number concentration (PNC). Our goal was to evaluate the ability 

of dispersion (CALINE4, AERMOD, R-LINE, and QUIC) and regression models to predict PNC 

in a residential neighborhood (Somerville) and an urban center (Chinatown) near highways in and 

near Boston, Massachusetts. PNC was measured in each area, and models were compared to each 

other and measurements for hot (>18 °C) and cold (<10 °C) hours with wind directions parallel to 

and perpendicular downwind from highways. In Somerville, correlation and error statistics were 

typically acceptable, and all models predicted concentration gradients extending ~100 m from the 

highway. In contrast, in Chinatown, PNC trends differed among models, and predictions were 

poorly correlated with measurements likely due to effects of street canyons and non-highway 

particle sources. Our results demonstrate the importance of selecting PNC models that align with 

study area characteristics (e.g., dominant sources and building geometry). We applied widely 

available models to typical urban study areas; therefore, our results should be generalizable to 

models of hourly averaged PNC in similar urban areas.
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Introduction

People living within several hundred meters of highways experience increased risks of 

respiratory and cardiovascular disease,1,2 and ultrafine particles (UFP; <100 nm in diameter) 

emitted in motor vehicle exhaust may contribute to these risks.3 UFPs have been shown to 

be associated with increased levels of inflammatory blood biomarkers in people living <500 

m from major highways,4,5 and UFP concentrations near highways can be twice as high as 

urban background concentrations.6–9

Potential exposures to UFP measured as particle number concentrations (PNC) have been 

quantified using mechanistic10–12 and empirical13,14 models across cities,15–19 in urban 

street canyons,20 and near roads.221–25 Mechanistic models are based on physical theory and 

include dispersion models like the California Line Source Dispersion Model (CALINE4),26 

the American Meteorological Society/Environmental Protection Agency Regulatory Model 

(AERMOD),2741–44 the research line source model (R-LINE),21 and the Quick Urban and 

Industrial Complex (QUIC) Modeling System.28 Empirical models of PNC and other traffic-

related air pollutants are often developed using land use regression (LUR), a technique that 

statistically relates pollutant measurements to road density, distance to roads and other 

variables.13,22,23,25,29 While dispersion models require detailed meteorological and traffic 

inputs and are broadly generalizable, regression models are based on monitoring data and 

are location-specific.13,23,29

Both dispersion and regression models contain uncertainties related to model structure 

assumptions (e.g., dispersion and chemical reactivity) and parameter value accuracy (e.g., 

meteorological data and emission factors).12 For PNC, the structure of model treatment of 

dispersion is likely to be more important than inclusion of chemistry. While particle 

coagulation may reduce PNC by 25% over an entire city (~1000 km),15 dilution is expected 

to have a larger impact on PNC than coagulation or other reactions (e.g., evaporation, 

photooxidation) at the neighborhood scale.12 At the same time, the particle emission rate is a 

key parametric uncertainty in PNC modeling because the emissions depend on the vehicle 

fleet, meteorology, and rapid transformation of emitted particles on and within a few meters 

of the road.12,30 Development of locally suitable PNC emission factors could improve the 

performance of both regression and dispersion models.12

Comparative performance evaluations demonstrate the magnitude of uncertainties in 

estimated uncertainties concentrations that are introduced by modeling decisions. In 
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different European studies of NO2, one component of traffic exhaust, performance (R2 and 

standard error) of dispersion models was similar,31–33 worse than34,35 or better than36 LUR 

performance relative to measurements. At different traffic sites, LUR and dispersion models 

either underestimated31,32 or overestimated37 air pollutant concentrations. Within most 

single studies, correlation coefficients (R2) between NO2 predicted by dispersion models and 

LUR, or two dispersion models, ranged from 0.55 to 0.90.32,33,35,36,38 However, in one 

study comparing LUR to European regulatory dispersion models, the agreement between 

NO2 models varied widely (R2 range = 0.19–0.89) and was lowest for comparisons using the 

least spatially resolved (>500-m grids) dispersion models.39 In the near-road environment, 

slight improvements were obtained by modeling plume meander and vehicle- and road-

induced turbulence.37,40 One near-road study using both a dispersion model (QUIC) and 

LUR to model PNC reported R2 = 0.8 between QUIC and LUR, although model 

performance was not evaluated.24 To our knowledge, there are no studies in the literature 

comparing performance of dispersion and regression models of PNC near roads. Therefore, 

we undertake the present study to evaluate how differences in model structure and inputs 

affect UFP concentrations predicted by near-road models.

The goals of this work were to evaluate the ability of line source dispersion and land use 

regression models to predict hourly PNC near busy roads in urban neighborhoods, and to 

provide insight about which kinds of models should be used for near-road PNC exposure 

assessment. We compared three Gaussian dispersion models (CALINE4, AERMOD and R-

LINE), a Lagrangian dispersion model with empirical flow approximations (QUIC) and 

neighborhood-specific spatial-temporal regression models (Table 1). Our specific objectives 

were to (i) compare distance-decay gradients predicted under different wind direction and air 

temperature scenarios in two urban near-highway neighborhoods to determine which models 

generate reasonable PNC predictions, and (ii) evaluate and compare the performance of the 

models in predicting PNC relative to measurements and each other.

Methods

Models

CALINE4—CALINE4 was developed in the 1970s by the California Department of 

Transportation to assess the impact of road vehicles on air quality and is an updated version 

of a United States Environmental Protection Agency (U.S. EPA) regulatory model.26,41 The 

main advantages of CALINE4 are its ease of use and relatively few inputs. CALINE4 uses 

an analytical solution to a steady-state Gaussian plume model to predict pollutant 

concentrations. Vehicle-induced turbulence is modeled by a mixing zone 2 m wider than the 

road surface. Dispersion outside the mixing zone is modeled using Pasquil-Gifford stability 

curves.

AERMOD—AERMOD (v8.1.0, Lakes Environmental) is a regulatory model that was 

developed in the 2000s by the American Meteorological Society and the U.S. EPA to 

simulate industrial source air quality effects.41–43 The main advantage of AERMOD over 

earlier models like CALINE4 is the improved parameterization of dispersion; however, 

AERMOD also requires more meteorological inputs (e.g., Monin-Obukhov length) to 
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support the more complex dispersion algorithms. AERMOD is a steady-state plume model 

that incorporates Gaussian dispersion and the Plume Rise Model Enhancement (PRIME) 

algorithms.42–434 Although AERMOD was developed for industrial point sources, it has 

previously been used to evaluate the effects of roads on local air quality.37,45 AERMOD can 

treat line sources as a series of point or volume sources or as an area source. In this model 

comparison, interstate highways were modeled as area sources.

R-LINE—R-LINE (v1.2) was developed by the U.S. EPA in the 2010s for predicting 

mobile-source air quality impacts near roadways.21,46 The main advantage of R-LINE is that 

it incorporates the advanced dispersion algorithms used in AERMOD into a line source 

model similar to CALINE. In R-LINE, roads are input as lines and simulated as a series of 

point sources. R-LINE can use analytical (used in this work) or numerical methods to 

predict hourly concentrations of inert traffic-related air pollutants.

QUIC—QUIC (v6.01) was developed by the Los Alamos National Laboratory and has been 

continuously updated since 1990 to model air pollutant releases in urban areas.47–49 QUIC is 

the only model considered here that explicitly models individual obstructions, and therefore 

requires greater computational resources than the other models. The wind-field module 

calculates three-dimensional flow fields around stationary obstacles including buildings, 

hills, and vegetation.49 Subsequently, a Lagrangian random-walk dispersion model 

superimposes a pollution source on the wind field and tracks the dispersion of pollutants 

downwind of the source.47 Although QUIC can simulate particle dynamics, particles were 

considered inert for this study.

Regression—Multivariate linear regression (land use regression) models of air pollution 

empirically relate measured pollutant concentrations to covariates including traffic volume, 

distance and direction to roads, and meteorology.13,29 The hourly neighborhood-specific 

models of the natural logarithm of PNC evaluated in this study were developed for the 

Community Assessment of Freeway Exposure and Health (CAFEH), and are described 

elsewhere.22,23 Briefly, the CAFEH models were spatial-temporal regressions developed 

using 1-second mobile monitoring measurements collected over the course of a year in each 

study area (see Model Inputs: Field Measurements). Land use, meteorological, and traffic 

variables were added to the models if they had a plausible physical relationship to PNC and 

increased R2 by >1%. Temporal variables in the final models included temperature, wind 

speed and wind direction. Spatial patterns were described by distance from I–93 and major 

intersections (but not distance from I–90) and by wind direction relative to I–93 and major 

non-road sources (e.g., airport and train station; Supporting Information Table S1).22,25 We 

did not have an independent dataset to evaluate the models; however, no single hour of 

measurements substantially affected the regression models’ performance in leave-one-out 

cross-validation.22,23

Study Area(s)—The five models were compared in 0.2-km2 areas <400 m from the edge 

of interstate highways in two contrasting neighborhoods in the Boston, Massachusetts, 

metropolitan area: the Ten Hills neighborhood in Somerville, and Chinatown in downtown 

Boston (Figure 1). In both areas, the fleet was 95–99% of the fleet was gasoline vehicles and 
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1–5% diesel vehicles depending on the day of the week and time of day.50,51 The Ten Hills 

neighborhood is bordered by Interstate Highway 93 (I–93; 150,000 veh day−1) and 

Massachusetts Route 38 to the southwest, Massachusetts Route 28 to the east, and the 

Mystic River to the north. Ten Hills is characterized by rectilinear blocks of 2 and 3 family 

homes (276 buildings with 10 m average height). Additionally, I–93 is elevated 5 m above 

grade with a 3-m-high noise barrier between I–93 and Ten Hills. The urban center of Boston 

Chinatown is bordered by I–93 to the east and bisected by I–90 (90,000 veh day−1) from the 

east to west. Chinatown is characterized by street canyons lined with residential and 

commercial buildings up to 100 m tall (824 in total). I–93 emerges from the Central Artery 

Tunnel just north of the Chinatown study area; I–90 is mostly below-grade (≤5 m) as it 

passes through Chinatown.

Modeling Scenarios

Highway Geometry and Emissions Inputs—Highway locations were obtained from 

MassGIS.52 In Somerville, I–93 was modeled as a line source 5 m above ground level. In 

QUIC, the elevated surface of I–93 was modeled as a 1-m thick block above 4 m of air, 

preventing particle transport downward through the road surface. The noise barrier was 

modeled as a 3-m-tall solid structure on the northeastern edge of the elevated highway 

surface. The highways in Chinatown were simulated as ground level sources. Highway 

traffic volumes and speeds were obtained from the Massachusetts Department of 

Transportation.53 Dispersion models were run with unit emission factors and predictions 

were scaled by particle number emission factors (PNEF; #-veh−1km−1) obtained from 

measurements on I–93 in the Central Artery Tunnel in Boston (see Section S1).54 Each 

model treated particles as chemically inert and assumed that contributions of other PNC 

sources were negligible relative to the contributions of I–93 and I–90.

Meteorology Inputs—The models were tested for a range of meteorological conditions 

defined by wind direction and temperature (Table 2). The wind direction was parallel or 

perpendicular downwind relative to I–93 (both areas) and I–90 (Chinatown only). For each 

wind condition, one hot hour (>18 °C) and one cold hour (<10 °C) were selected. Surface 

meteorological measurements were obtained from Logan International Airport (KBOS).55 

Upper air data from balloon soundings (16 m – 331,000 m) were obtained from Chatham, 

MA (CHH–74494). Pasquill–Gifford atmospheric stability class and mixing height were 

assigned using the Turner workbook and Monin–Obhukhov length was calculated with 

AERMET v12345.56,57 Standard deviation of wind direction, σθ, was set to 20° following a 

sensitivity analysis showing that CALINE4 predictions are not strongly affected by σθ.26

Building Parameterization—In CALINE4, AERMOD, and R-LINE the aerodynamic 

roughness of the ground surface was assigned the CALINE4 default for each neighborhood: 

for Somerville, the roughness coefficient was 100 cm (suburban environment) and for 

Chinatown, the roughness coefficient was 400 cm (central business district).58 For QUIC, 

building footprints and heights were obtained from a shapefile based on LIDAR 

measurements59 and a building wall roughness, z0, of 0.1 m was assumed.20 The regression 

models did not consider building geometry.

Patton et al. Page 5

Environ Sci Technol. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Modeling Domain, Resolution, and Receptors—To avoid inaccurate dispersion 

model predictions due to changes in wind flow near model domain edges, the horizontal 

domains extended outside the study area by 50 m in Somerville and 500 m in Chinatown 

(i.e., 5 times the average building height).20 The domain heights were 100 m in Somerville 

and 200 m in Chinatown. In QUIC, wind fields were resolved to 1 m in each horizontal 

direction, x and y; the vertical (z) resolution was 1 m at the surface and increased 

parabolically with elevation. Pollutant concentrations were calculated by QUIC on a 5m 

10m × 5m 10m × 5m 10m three-dimensional grid. CALINE4, R-LINE, AERMOD, and the 

regression models were spatially continuous (i.e., non-grid) and therefore spatial resolution 

in the dispersion models was limited by accuracy in the GIS layer files and spatial resolution 

in the regression models was limited by the PNC measurements. Modeling results were 

exported to a 20-receptor transect in Somerville and an 80-receptor grid in Chinatown. 

Receptors were ~20 m apart at distances from 0 to 400 m from the edges of highways and 3 

m above ground level.

Field Measurements—Mobile monitoring of PNC <500 m (near-highway) and >1000 m 

(urban background) from the edge of I–93 was conducted with the Tufts Air Pollution 

Monitoring Laboratory (TAPL). Monitoring was conducted by driving the TAPL on fixed 

routes in Somerville on 43 days (September 2009 – August 2010) and in Chinatown on 47 

days (August 2011 – July 2012).7,8 PNC was measured each second with a condensation 

particle counter (CPC 3775, TSI, Shoreview, MN), assigned a location by matching the CPC 

time with that of a Garmin GPS V receiver, and quality controlled following standard 

CAFEH procedures.7,8 To reduce noise in the measurements for comparative model 

performance evaluations and increase stability of spatial patterns, a loess smooth (span=0.2 

based on previous work7) of PNC as a function of distance to the highways was developed 

for each scenario to assign PNC measurements to receptors. Each near-highway (<200 m) 

loess smooth was the average of 3–12 near-highway transects. Background PNC in 

Somerville was calculated as the mean of ~10 min of measurements >1000 m from I–93 

during the same hour as near-highway measurements.7 Comparable background 

measurements were not available for Chinatown; therefore, background concentrations were 

estimated as the 1st percentile of PNC from each hour of monitoring. Sensitivity to this 

assumption was tested by repeating analyses for Chinatown using the 25th percentile of 

measurements as background.

Model Performance Metrics—Model predictions were evaluated for 4 hours in 

Somerville (Scenarios SV-1 to SV-4) and 6 hours in Chinatown (Scenarios CT-1 to CT-6), 

for a total of 10 test scenarios (Table 2). The metrics used for model evaluation relative to 

measurements were correlation coefficient (R2), fraction of predictions within a factor of 1.5 

(FAC1.5) and 2 (FAC2) of measurements, normalized mean square error (NMSE), and 

fractional bias (FB). These performance measures were calculated with a custom statistics 

function in R (see Section S2) and have been widely used to evaluate air pollution 

models.20,60,61 Model performance relative to measurements was considered acceptable if 

R2 > 0.9, NMSE ≤ 0.25, absolute value of FB ≤ 0.25, and FAC2 > 0.7.60,61 In addition, the 

level of agreement among predictions from different models was assessed using Pearson 

correlations. All analyses were performed in R version 3.0.1.62
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Results and Discussion

Model Performance in Somerville

In Somerville, CALINE4, R-LINE, AERMOD, QUIC, and the regression model predicted 

near-highway PNC gradients that approached background concentrations at ~200 m from the 

edge of I–93 (Figure 2). In addition, arterial roads began to influence measurements at 

distances from I–93 greater than ~200 m. Therefore, all model evaluations and comparisons 

in both Somerville and Chinatown were made from 0–200 m from the edges of I–93 and I–

90. The models reasonably predicted Somerville scenario measurements (Figure S1) for 

warm hours (Scenarios SV-3 and SV-4) and the cold hour when the wind was perpendicular 

to I–93 (Scenario SV-1; Table S2). QUIC most closely approximated the shape of the 

measured PNC distance-decay curves; however, CALINE4, AERMOD, and R-LINE also 

performed reasonably well (and outperformed QUIC when the wind was parallel to the 

highway). Agreement of model predictions with measurements ranged from moderate to 

acceptable for individual scenarios (R2 =0.43–0.96, NMSE ≤ 0.22, |FB| =0.12–0.90; Table 

S2). The Somerville regression model generally performed better for the four scenarios 

(R2=0.69, 0.28, 0.96, and 0.72) than it did for the full CAFEH dataset (R2=0.42).22 An 

exception to the overall good performance was for the cold hour with wind parallel to I–93 

(Scenario SV-2), when a wide zone of elevated PNC near I–93 was not predicted by the 

models (e.g., R2 ≤0.52 for all models). During the overcast midday of SV-2, PNC was 

unusually high both near I–93 (~75,000 particles/cm3) and in the urban background area 

(~50,000 particles/cm3), suggesting that decreased vertical mixing in the morning 

contributed to the buildup of PNC.

In Somerville, there was high agreement among models; Pearson’s r among model 

predictions was >0.82 overall and >0.58 for individual scenarios (Table S3). QUIC generally 

predicted the highest PNC and the near-road gradient with the shape closest to that of the 

smoothed data, except for Scenario SV-2 (cold air temperature, winds parallel to I–93) when 

QUIC was unable to predict a near-road gradient. The highest correlations were found for 

predictions from the three Gaussian dispersion models (CALINE4, AERMOD, and R-

LINE), which had similar curves with r>0.98 for all four scenarios. CALINE4 predicted 

slightly higher PNC than AERMOD and R-LINE near I–93 during cold hours (Scenarios 

SV-1 and SV-2) and slightly lower concentrations during hot hours (Scenarios SV-3 and 

SV-4). The regression model predicted lower PNC than the dispersion models except for 

when the wind was blowing perpendicular to I–93 from the west on a cold day (Scenario 

SV-1). Low correlations were found for QUIC relative to all other models in Scenario SV-3 

(r = 0.78–0.80), and for the regression model relative to other models for Scenario SV-2 (r = 

0.63 for CALINE4, 0.75 for R-LINE, and 0.58 for AERMOD). However, all the models had 

generally acceptable performance and could be applied to neighborhoods like Somerville.

Model Performance in Chinatown

On average, the models predicted weak near-highway concentration gradients extending 

100–200 m downwind (west) of the edges of I–93 (Figure 3) and (north and south of) I–90 

(Figure S2) in Chinatown. Gradients from the individual highways were more difficult to 

discern than those in Somerville. Complexities in spatial trends in Chinatown were not 
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accurately captured due to the generally high background PNC and contributions from 

multiple highways. All the models underestimated measured PNC in most Chinatown 

scenarios and underestimated the range in PNC upwind and downwind of I–93 and I–90 for 

warm and cold hours (Scenarios CT-1 to CT-6; Figure S3). R2 was ≤0.45 and NMSE was 

≤0.26 for all five models under all individual Chinatown test scenarios, and FAC2 (≤70% for 

all dispersion models) and FB (−1.21 to 0.68) were outside of generally accepted standards 

(Table S4). The performance of the Chinatown regression model for the six test scenarios 

(R2=0.37, 0.00, 0.00, 0.26, 0.43, and 0.36) varied substantially compared to the model 

performance in the CAFEH dataset as a whole (R2=0.24).237 The poor performance of the 

models in Chinatown reflected the inability to capture the more complex spatial patterns in 

PNC. In sensitivity analyses, changes to increase the loess smooth span (Figure S4, Figure 

S5) and the assumed background PNC (Figure S6) improved the fraction of predictions 

within a factor of 2 and 1.5 and the fractional bias. Neither the R2 nor the NMSE was 

affected by these adjustments (Table S5) because the changes did not substantially affect the 

spatial trends in PNC. Similar results were obtained when only those receptors downwind of 

I–90 were considered. While removing receptors upwind of I–90 improved FAC2 and 

FAC1.5 by ~12% on average (Table S6), correlations between measurements and PNC 

predictions at downwind receptors were not generally better than those using the full set of 

receptors (Figure S7).

PNC predictions from the five models had less agreement in Chinatown than in Somerville 

(Table S7). During cold hours correlations among predictions were as low as 0.57 between 

CALINE4 and AERMOD (Scenario CT-1: east wind perpendicular to I–93) and 0.77 

between CALINE4 and R-LINE (Scenario CT-5: north wind perpendicular to I–90). 

Surprisingly, QUIC and the regression model sometimes predicted trends in the opposite 

direction from the other models. For example, during cold (Scenario CT-2) and hot 

(Scenario CT-3) hours with wind from the southwest, predictions from QUIC and the 

regression model were negatively correlated with predictions from CALINE4, AERMOD, 

and R-LINE (r= −0.75 to −0.11). These inconsistent results when the wind was from the 

southwest may be related to air recirculation in the street canyon formed by buildings north 

and south of I–90.20 QUIC predicted upward air flow on the north edge of the street canyon 

and downward flow on the south side, leading to upward dispersion of particles north of I–

90 (Figure S8). Because I–90 is actually below grade but was modeled at ground level in all 

five models, the wind flow deviations due to street canyon effects may have been larger than 

the deviations predicted by QUIC and therefore the models may have overestimated PNC 

relative to models of a below-grade highway.

Comparison to other evaluations of near-road models

Our main findings that the five models tested were in generally good agreement with each 

other, but not necessarily with measurements, are consistent with the few available near-road 

PNC model evaluations. Our results are in line with studies that had qualitatively good 

agreement with measurements for both QUIC28 and CALINE4,63 and had R2 of 0.2–0.5 

between hourly or sub-hourly near-road PNC regression models and measurements.17,23,25 

In addition, our correlations between predictions from QUIC and regression models of PNC 
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in Somerville (R2=0.82) and Chinatown (R2=0.79) were similar to those reported for New 

York City (R2=0.80).24

Our results are also similar to other studies comparing models of traffic emissions. In 

previous studies of model performance, predictions of NO2 and tracers (i.e., sulfur 

hexafluoride) have been within a factor of two of observations with reasonable agreement 

among models (e.g., CALINE4, AERMOD, R-LINE, QUIC, CAR, Urban, and 

regression).31–39 We found that our tested models generally underestimated PNC relative to 

measurements, consistent with previous studies that reported underestimation of traffic-

related air pollution by dispersion models for conditions of atmospheric instability, wind 

direction perpendicular to the highway, or low concentrations.11,36,37,45 However, our results 

were different from studies that reported overestimation of traffic-related air pollution during 

stable or parallel wind conditions, and when concentrations were relatively 

high.11,27,36,44,45,64 Differences between our study and those reporting overestimations of 

concentrations could be related to model characteristics (e.g., the importance of aerosol 

chemistry or other primary and secondary PNC sources) and uncertainty in the emission 

factor inputs. In addition, although dispersion models (e.g., AERMOD, CALINE4, and R-

LINE) of near-road traffic-related air pollution have generally been reported to perform 

better for wind speeds >1 m/s,11,21,37,38,45 we did not observe any consistent differences 

between high and low wind speeds in our study, possibly because we did not model any 

hours with low enough wind speeds to observe a difference.

Sources of Uncertainty

The main sources of uncertainty in model predictions of near-highway PNC include factors 

related to model inputs (e.g., emission factors and local street traffic) and structure (e.g., 

treatment of plume meander and particle dynamics). The uncertainty in particle number 

emission factors is about a factor of 10 because limited data are available on how particle 

number emission rates change as a function of fleet composition, vehicle speed, traffic 

congestion, and meteorological conditions.54,65 To maximize the applicability of the EFPN 

to this study, we used temperature-adjusted EFPN from a study in the Boston Central Artery 

Tunnel.54 Using these emission factors, we achieved reasonably good fits to measurements 

in Somerville but underestimated PNC in Chinatown by about a factor of 3 (Table 2). These 

results suggest that an emission factor closer to that reported for the Williamsburg Bridge in 

Brooklyn, NY (5.7 × 1014 # veh−1 km−1, ~2.5 times higher than our emission factors) might 

be more appropriate for neighborhoods like Chinatown than the tunnel-derived values.24

Similarly, changes in local-scale meteorology and emissions from highway and non-

highway sources could impact PNC gradients near highways.9,66,67 The monitoring data 

were not adjusted using fixed sites because the models were built to reflect the traffic and 

meteorological conditions when the measurements for the test scenarios were performed, 

and sub-hourly measurements were not available from any fixed site. In Chinatown, 

emissions from local traffic, diesel trains at South Station, and airplanes at Logan Airport 

east of I–93 may have contributed to the differences between the PNC models and 

measurements. In some applications, models of PNC from highway traffic might be 

appropriate even if the models do not agree with measurements of total PNC. However, 
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researchers modeling total PNC would be well served to invest in modeling all nearby 

sources of ultrafine particles, especially in more complex areas like Chinatown.

Different treatments of plume meander and exclusion of aerosol particle dynamics contribute 

to structural uncertainties in near-road models of PNC. Treatment of plume meander is one 

of the major structural differences among the models considered here; AERMOD and R-

LINE assume radial dispersion at low wind speeds, CALINE4 has a parameter for the 

standard deviation of wind direction, and QUIC does not account for deviations from the 

mean wind direction unless a physical obstacle is present.21,45,4749,64 However, all of the 

tested dispersion models had similar PNC predictions at the low (<2 m/s) wind speeds (e.g., 

Scenarios SV-1, CT-2 and CT-5) in which plume meander is applied in CALINE and R-

LINE. Similarly, while particle formation and removal can be important during episodes of 

very high PNC and over large distances,12,15,30 these processes are not likely to be important 

for the near-road environments considered in this paper. Review articles suggest time-scales 

of ~200 s for advection, ~1000 s for deposition, and ~10,000 s for coagulation for near-road 

environments with typical PNC (104–105 particles/cm3).12,68 Therefore, particles are likely 

to be advected out of the near-road environment (0–200 m) before evolving enough to 

substantially change the number concentrations.

Implications

This is one of the first studies, and the most comprehensive to date, comparing multiple 

near-road models of PNC on an hourly time-scale. We showed that near-road air pollution 

models agree in some, but not all, likely meteorological and building scenarios. This result is 

important because exposure assessment4,69,70 and epidemiology5,71 of traffic-related air 

pollution are increasingly incorporating participant time-activity patterns. Therefore, 

understanding the errors in different air pollution models over short periods is valuable for 

predicting potential biases in exposure assessment for those models.

Based on our results, we recommend that researchers carefully consider the impacts of 

choice of dispersion or regression model on their near-road PNC predictions. Differences 

among models may be most important in areas with complex roadway geometries and wind 

patterns like our urban center neighborhood (i.e., Chinatown) or <50 m from the highway 

edge, where all five models tested under-predicted the measurements by up to a factor of 

three. Overall, the most important parameters affecting the model predictions were the 

locations of particle sources and buildings relative to wind direction. Depending on area 

geometry, modelers may choose to use a hybrid approach with one model (e.g., QUIC) for 

wind directions where street canyon effects dominate and another model for other wind 

directions where the benefits of including wind flow around individual buildings might not 

be realized.

The models and study areas used in this investigation were selected to maximize 

generalizability for other near-road PNC modeling efforts. The four dispersion models we 

tested are freely available to the air pollution modeling community and have been used in 

research and regulatory applications;21,24,28,41,44–4542–44,46,48,58,64 the regression models are 

similar to those being developed and used in epidemiological studies.13,17,29,33,36 While the 

Somerville study area presented some modeling challenges (i.e., I–93 was elevated, had a 
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noise barrier, and was parallel to a state highway), it is typical of the complexity of many 

urban neighborhoods near highways. In contrast, Chinatown was typical of an urban core 

area where model performance can be degraded by complex roadway and building 

geometries. While we expect our methods and results to be broadly generalizable to hourly 

models of PNC in similar urban areas near highways in the United States, future work is 

needed to assess the generalizability of the model comparisons to other locations and over 

longer time periods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Somerville and Chinatown study areas with particle sources (highways and tunnel exit), 

Tufts Air Pollution Monitoring Laboratory (TAPL) routes and model receptors, and heights 

of buildings modeled in QUIC. Receptors represent the locations where the model 

predictions and measurements were compared. The building shapefile was obtained via the 

Tufts University GIS data server.59
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Figure 2. 
PNC-distance plots up to 200 m from the edge of I–93 in Somerville predicted by 

CALINE4, R-LINE, AERMOD, QUIC, and the CAFEH regression model. The four 

scenarios are for wind directions relative to I–93 and hot or cold air temperatures, as listed in 

the panels and described in Table 2. Smoothed near-road measurements (NR Measured) and 

background concentrations (B Measured) are shown for comparison. Values in (b) above the 

scale limit are 211, 135, 119, and 105 * 103 particles/cm3 at distances of 20, 40, 60, and 80 

m, respectively, from the edge of I–93.
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Figure 3. 
PNC-distance plots up to 200 m from the edge of I–93 in Chinatown predicted by 

CALINE4, R-LINE, AERMOD, QUIC, and the CAFEH regression model. The six scenarios 

are for wind directions relative to I–93 and hot or cold air temperatures, as listed in the 

panels and described in Table 2. For parallel wind directions, the descriptions include 

whether the wind was from the north (N) or south (S) across I–90. Smoothed near-road 

measurements (NR Measured) and background concentrations (B Measured) are shown for 

comparison. See Figure S2 for gradients from I–90.
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